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ABSTRACT

An N-component parallel system is subjected to a known load program.

As time passes, components fail in a random manner which depends on

their individual load histories. At any time t , the surviving com-

ponents share the total load according to some rule. The system's

lifetime distribution is studied under various breakdown rules.

Under the linear breakdown rule it is shown that if the load program

is increasing the system lifetime is IFR. Using the notion of Schur

convexity, stochastic comparison of different systems is obtained.

It is also shown that the system failure time is asymptotically nor-~

mally distributed as the number of components grows large. All these

results hold under various load sharing rules, in fact, one can prove :
that the system lifetime distribution is invariant under different ;
load sharing rules. !

For a more general breakdown rule only the equal load sharing is ?
considered. The asymptotic distribution of the system lifetime is ;
shown to be normal. The asymptotic mean and variance are derived.

e e e
Accesnien Tor




CHAPTER 1

INTRODUCTION AND SUMMARY

This report is concerned with the study of parallel systems whose
components are subjected to a certain nonnegative time dependent load.

Consider a parallel system of n components. The system sustains
a certain load (damage, wear) which varies in time, and thus each
functioning component is exposed to a certain fraction of this load.
As time passes, components fail in a random manner which depends on
the amount of damage they have been exposed to. As the single compo-
nents fail one by one, each of the surviving components is exposed to
an increasing share of the total load. This model is known in the
literature as the "load sharing model" and has been treated previously
by Coleman (1958), Birnbaum-Saunders (1958) and more recently by
Phoenix (1978). Coleman adapted this model in connection with the
strength behavior of fiber bundles and his theoretical results were
remarkably consistent with the experimental behavior of a variety of
structural materials. Birnbaum and Saunders used the model to study
the "Fatigue" of materials under conditions involving dynamic loading.
They also reported a very good agreement with empirical data. Phoenix
(1978) adapted Coleman's assumptions about the stochastic behavior of the
single component under a given load program. He made use of Stigler
(1974) paper to show that the system failure time is asymptotically
normally distributed as the number of components grows large and thus
generalized Coleman's results which dealt with the calculation of the

asymptotic mean time to failure. All previous study assumes that all




the components are identical, that is each individual component has

the same stochastic behavior under a same load program. Furthermore,
the surviving components at any time t are assumed to share the total
load equally.

In this report we generalize these assumptions, We allow the
components to be nonidentical and for some special case to share the
total load in a fairly general way.

In Chapter 2 we adapt the linear breakdown rule that was essentially
used by Birnbaum-Saunders. Loosely speaking, if a single component is
subjected to a time dependent load program, the failure rate of the com-
ponent at any time ¢t 1is linear in the load at t . Birnbaum-Saunders
were interested in certain statistical aspects of the system (e.g.,
estimating the number of components in the system and the deterioration
factor of the individual component). We focus on the stochastic
characteristics of the system. Among other things we prove that the
components lifetimes are stochastically associated, that if the system's
load program is nondecreasing, its failure time is IFR. Using the
notion of Schur convexity, we obtain stochastic bounds on the system
lifetime distribution. Asymptotic results are also available as the
number of components in the system grows large. All these results are
shown to hold under a fairly general load sharing rule. In fact, we
prove that the distribution of time to system's failure is invariant
under the load sharing rule.

In Chapter 3 we adapt Phoenix model and generalize it to the
nonidentical component case. We obtain asymptotic results similar to

those in Phoenix (1978) and also point out an unjustified statement in

his paper and give our version for it.




CHAPTER 2

THE LINEAR LAW BREAKDOWN RULE

Consider a system of N components in parallel which are being
subjected to a nonnegative time dependent load Ls(-) . At any time
t , all the surviving components share the load according to some rule.

In the first three sections of this chapter, we assume that they share

the load equally. This assumption is removed in Section 2.4, where

we consider a more general rule. Thus for the time being, if 1

(i < N) components have failed prior to time t , the actual load on

each of the N - i surviving components at t is Ls(t)/N - 1.
Component i (i =1,2, ..., N) subjected to a known load

program 1(+) has a random failure time T, . Throughout this

i

chapter we assume that under 1(+) the distribution of Ti is of

the form:

t
-8, f 1(u)du

*0
Fi(cl1)=1-e

where B is a strictly positive constant which characterizes the

i
durability of component i .

I1f we define

d
£,(t | 1) = 2t e | D and

fi(t | 1)
t >0
- Fi(t | 1) =

A (e | 1) = I

then it is easy to check that xi(t l 1) = Bil(t)




t

A (e | 1) 1is the failure rate function of component i under the known
load program 1(¢) . It can be interpreted as the instantaneous prob-
ability of a t years old component i to fail, that is, component

i having not failed prior to time t and sustaining load 1(t) will
fail during the interval (t , t + At) with probability Bil(t)At + o(At)
where o(At) denotes remainder terms of order less than At as At - 0
For the obvious reason we say that the component obeys the linear law
breakdown rule. As a system, the components lifetimes are, therefore,
strongly dependent but only through their failure rate functions. For
instance, if at t there are j (1 < j < N) functioning components and
a component fails, then under the equal load sharing rule the load that
each of the surviving components sustain changes instantaneously from

Ls(c—)/j at t to Ls(t)/j -1 at ¢t

2.1 The Joint Distribution of Components Lifetimes

We denote by Tl’TZ’ ceey TN the lifetimes of components 1,2,

.y N respectively and by T(l) §_T(2).i cen < T( their order

N)

statistics. We assume that the system is being subjected to a non-

negative load program Ls(t) and that each component obevs linear

law breakdown rule. Each of the components is being characterized

by its proportional factor 8 (Birnbaum, Saunders (1958) called it
the deterioration factor) which is assumed to be strictly positive
number. The system itself is being characterized by its load program
Ls(-) and by the vector

B = (BuByy «euy By)

The above assumptions lead to the following facts:




(2.1) For amy i (i = 1,2, ..., N) ,

L (®)

N

P(T, € (¢, t + At] | T >t) = B At + o(At)

(L
as At » 0 .

3}
(2.2) 1f 0 St St g S, k <3j <N, and {nl,nz, cees nN}

is an arbitrary permutation of {1,2, ..., N} , then:

P(Tn‘ €(t,t+ael | T =t o, To=r T c) =
j 1 k
Ls(t)
+
an Nk At o(At)

as At > 0 .

Facts (2.1), (2.2) tell us that if exactly k (k=0, ..., N - 1)
components failed by time t and component j 1s not among them,

then the failure rate of j at t 1is

From (2.2) we also learn that the order in which the components failed
does not affect the failure rate of component j , as long as it is

given that n - j survived t and j 1is among them.

Lemma 2.1:




Proof:

From (2.1), it is obvious that the failure rate function of T(l) is
L_(t) 1§ )
N 5=1 3
Q.E.D
Lemma 2.2:
Let 0 <ty <ty<...<t <t, k<N andlet {n;,n,, ..., n}
be an arbitrary permutation of {1,2, ..., N} . Then for x > 0 we have
P(T(kﬂ.) >t + x| Tnl =t -, Tnk =t 0 Ty t) =
‘Sn + .+ 8 t+x
1 I
exp -~ I T— J. Ls(u)du‘
t
Proof:
Follows from (2.2) in a straightforward way.
Q.E.D

{egd , {ny} as in Lemma 2.2 and let dt denote the infinitesimal

interval (t , t + dt) , then for x > 0 :

p(r €dt , T >t +x | T =¢t, ..., T =t , T :)=
o — (k+1) ny 1 M1 k-1 (k)
3 8 + ... + 8 t+x
n n
k ‘ k+1 h )
N -k + 1 Ls(t) exp l' N - k f LS(U)dU‘ dt .
t




P(Tnkegg s Tpr) > B ¥ | Tnl =t eens Tnk-l =t 0 Ty t) =
P(T(k+l) >t +x | Tnl =ty eees Tnk—l =ty o Tnk =te_q Tnk =t ,
T 1) t) . P(Tnked_t | Tnl =t e, Tnk—l =t Ty t) .
Combine (2.2) and Lemma 2.2 and the result follows.
Q.E.D
We are now ready to state the following theorem:
Theorem 2.1:
Consider the simplex 0 < t; < ... <ty and let {nl,nz, e, nN} be

a permutation of {1,2, ..., N} , then

P(Tnl € de.,T E-QEZ’ cens Tn € EEN) =

Ul
1 n2 N

N t

it B.Ls(t.)dt. Bn + ...+ 8 1
=1 25 J 3 N ™ L (e
N1 exp N grulau

0

8 +...+snN £ &N
+ 2 N =1 J— LS(u)du + ...+ BnN f Ls(u)du

t t

1 N~-1




Proof:

x P(T(l) > tl

Combine Lemmas 2.1, 2.2, 2.3 and the result follows.

Q.E.D.
Corollaxry 2.1:
If Bl = 82 = ,,, = BN = B , then the density function of T(N) is
given by
¢ N-1
L (u)d F
g u/av -8 f Ls(u)du
N 0 0]
£ (t) = 8'L_(t) e
T(N) s (N - D!
Proof:
By Theorem 2.1, we have that on 0 < t1 < ... <ty
t
N -8 f Ls(u)du
: 0
P(T de., , T = n L (t, .




Integration yields the result.

Q.E.D.

In fact, this result can be obtained directly from the simple

observation that if the B8's are equal then
q

P(T 5y € dt | Tyyr <o Tegory > Tey > O
8L (t)dt on T(i-l) <t
0 on T(i—l) >t

Thus the ordered sequence of failure times T(l) E.T(z) < s i-T(N)
behaves like a sequence of "events'" taken from a nonhomogeneous Poisson

process with intensity function BLS(°) , and

P(T(N) < t) = Pr {there are at least N events of the Poisson

in (0,t]}

t
-8 f Ls(u)du

N t J 5
-1- 3 (efLS<u)) /3t
=0 \ 0

d
and It P(T(N)

Let us now detrine the random process L(t)

< t) yields the result.

L()/N 0 <t < T(l)

L (®)
(2.3) L) = \wo1 Ty £t < Ty 21,2, oo, N -1

Ls(t) t>T

)




and let
T,
1

(2.4) Q; = f‘.(u)du , 1i=1,2, , N
0

Thus intuitively, Qi is the total load sustained by component i
during its lifetime.
Theorem 2.2:

The random variables Ql’QZ’ ey QN are independent exponentially

distributed with rates 51,82, ..., B respectively.

N

Proof:

The joint density function of the Q's can be written in terms of

the joint density of the T's :

fg(ql,qz, ooy ) = fz(tl,tz, tN)HJH_

where L, = ti(ql, vees qN) , 1i=1,2, ..., N and |IJ|| =

is the Jacobian of g with respect to ¢t .

Now consider the simples 0 < 9p € Qy < eee < and let tl,tz,

Iy

t be such that
N




Clearly tl < tz < ... < tN and the joint density function of Ql’

cees QN

on the above simplex is

-8.q9,

i%i
T 8,Lo(e(ay, «vvy qy)le
£ (q qp = |12 a1t .
9 1’ LI Y N N:
By simple calculus we also have
Ls(cl)
N O

Ls(tz)
N-1

e e e e e e e e e e e .Ls(tN)




and hence

]| =2

Thus on 0 < 9 €9y < eer <Gy the density on the Q's 1is

N ~-B.q,
f (ql, vees qN) = I Bje 3]

Q 4=1
It is fairly easy to check this argument holds for an arbitrary simplex

of the form 0 < < ie. < , Where {n,,n,, ..., } is a
qnl qu 172 N

permutation of {1,2, ..., N} . Thus the joint density function of

Q,Q, -+., Q 1is given by

f (Qes «++5 q,) = I B.e ,q,. >0 ,41i=1,2, ..., N
Ql’ cees QN 1 N 4=1 1 i

Q.E.D.

The importance of this theorem is that it establishes the existence of

a transformation wL , wL : (Tl’ cees TN) > (Ql, cens QN) which under a
s s

given load program LS(-) maps the random vector T with dependent com-
ponents into Q with independent components. This fact enables us to
analyze most of the parameters of the system in terms of independent random
variables. Indeed, throughout the next two sections we use this fact to

find conditions under which the system lifetime is IFR, obtain bounds




for the system's reliability function as well as to establish the

asymptotic distribution of the system's lifetime as N , the number
of components, increases to infinity.

We start with proving the rather intuitive fact that the life-
T

times of the individual components (T are associated, but

l’ LA | N)

first some necessary preliminaries.

Definition:

We say that the random variables 21,22, ey Zn are associated if:
Cov (£(2),g(2)) > 0 for all nondecreasing functions (f,g) for which
the covariance is well defined. We use Z for (Zl’ s Zn) .

For completeness we start with the following properties of associa-

tion:

(Pl) Any subset of associated random variables are associated.

(PZ) If two sets of associated random variables are independent
of one another, then their union is a set of associated
random variables.

(P3) The set consisting of a single random variable is associated.

(PA) Nondecreasing functions of associated random variables are
associated.

(PS) Independent random variables are associated.

From the way wL : (Tl, caey TN) > (Ql’ ey QN) is comstructed,
s

it is clear that if the load program LS(-) is strictly positive

for each ¢t , wL is one to one and hence w;l is also well
s s

defined. Now in order to prove that (Tl’T2’ vey T are indeed

N




associated, it suffices to show that w;l is nondecreasing, that is,
s

Tl(Ql, ceey QN)’TZ(QI’ ceey QN), vees TN(Ql, ceey QN) are all non-

decreasing.

Lemma 2.4:

If Ls(') > 0 , then w;l is well defined and increasing
s

functional.

Proof:

The first part follows easily from the way wL is constructed.
s

-1 . _
To show that WLS : (ql, cees qN) - (tl, ey tN) is increasing func

tional, denote by 91) f_q(z) < e and ¢t

< < < +.. <t
=) MW =f@ = 2w
the increasing rearrangement of Qys res Gy o tl’ ey tN respectively.

-1
Under st , t(l)(ql’ ey qN)’t(Z)(ql’ ey qN), ey t(N)(ql’ ey qN)

are such that

(L) L_(w)
q(l) = f N du
0

t
L () () 1 (u)
q = J S du + f . du
(2) N N -1
0 t(l)
"W W N
S

q(N) = du + ... + j Ls(u)du .

(1
| =
0




Now fix all q's and increase q(i) by the infinitesimal increment r

dq(i) . It is easy to check that for j < i, t(j) remains unchanged.

For t(i) we have {

L (t )
- (1)
dq 4 N 1+ 1 9

To find dt(i+l) note that
L (t ) L (t )
- = _s (itl)’ s ()7
0=dqy4yy =49y Yo 1 YCusny T o1
or
dt . .y = “s ) dtgi)
(i+1) Ls(t(i+l)) N-1i+1
and indeed for k > 1
L (t ) dt, .,
dt = (i) D) -2, , N - i
(i+k) Ls(t(i+k)) N-i+1

which completes the proof.

Q.E.D.

Corollary 2.2:

The components lifetimes Tl’ ceny TN are associated.
Next we show that under increasing load program the system lifetime

is IFR.




Definition:

A nonnegative random variable X with distribution F(+) is said
to be IFR (or equivalently is said to have an increasing failure rate
distribution) if log (1 - F{(x)) 1is concave where finite.

If F also possess a density f(-) , then it is easy to check that

f(t

the above is equivalent to saying that A(t) = E—:L?%FY is non-

decreasing on {t : F(t) < 1}

Lemma 2.5:

Let g be an increasing differentiable function and let (X,Y)
be two random variables such that Y = g(X) and suppose Y has a
failure rate function \Y , then the failure rate function of X
is given by 1\ () = A (g(t))g'(t)

Proof:

(0 £ (e(0)g' (D)
SN NOR S MO S

Theorem 2.3:

If the system load program LS(') is nondecreasing, then the system

lifetime is IFR.

Proof:

Let Ql’QZ’ vy QN be as defined in (2.4), then check that

. T
izl Qi = J. Ls(u)du .
0




N
Now since the Q's are independent IFR, so is E Qi and by Lemma 2.5
i=1

we have

t
A (£) = A J‘Lw(u) L (t)
T(N) LQ J s 3

Hence A is nondecreasing.
Tav)

Q.E.D.

2.2 Schur Functions and System Reliabilitv

The method and concept of majorization and Schur functions are used
in this section to make stochastic comparison between systems with
different components (that is, components with different B-factor) and to
develop conservative bounds for the system lifetimes. For the sake of
completeness we review some of the definitions and tools of majorization

and Schur functions:

Given a vector x = (x ceey X let x > X > ... > X
= (e eeey X)) (1} = *(2) = = *[n]
denote the decreasing rearrangement of xl,xz, ceey Xn .
Definition:

A vector x {is said to majorize a vector x' if

J ]
}..x f_zx' fO‘[J=l’ ’n_l
(51 Wl =L 7l
and
n n
Doxggp= 1o«
=1 A1 g2y TH
m
We write x > x'




Although majorization involves comparison of vectors of order n ,

the following characterization shows that we need only consider a pair

of coordinates at a time.

Theorem 2.4: (Hardy, Littlewood, Polya, 1952, p. 47)

m
Let x >

x' . Then x' can be obtained from x by finite
number of T-transformations, where a T-transformation changes two
coordinates only, and in the following way. If for example coordinates

1 and 2 are being transformed, then T(y) = (yi,y;,yé, v y;) where

max {yl,yz} > max {yi,yé} and y, +y, = yi + yé . Furthermore we

m
have y > T(y)
. . : . . n
Majorization represents a partial ordering in R . A Schur
function is a function that is monotone with respect to this partial

ordering, more formally:

Definition:

m
A function h(+) satisfying the property that x >

x' implies
h(x) > (<) h(x') 1is called Schur comvex (Schur concave) function.
A useful characterization of Schur functions is provided by the

fundamental theorem of Ostrowski (1964) which states:

Theorem 2.5: (Ostrowski)

A differentiable, permutation invariant function h on R" is

Schur convex (Schur concave) iff
dh oh .
(xi - xj)(sgz - 3;;) > (<) 0 for all 1 # j

We use this to prove the following:




Theorem 2.6:

If Xl s X2 are independent exponentially distributed random

variables with rates Al s A respectively and X! , X! are independent

2 1 2
exponentially distributed with rates Ai , Aé respectively, and if
m
1) 1] ] 1]
(Al,Az) > (Al,xz) , then for any t >0 P(Xl + X2 > t) Z_P(X1 + X2 > t)
Proof:

By using the Ostrowski Theorem it is not difficult show that

P(xl + x2 > t)

is Schur convex in (Al,xz)

Corollarv 2.3:

If Xl,Xz, ey Xn and Yl’YZ’ ceey Yn are two sets of independent
exponential random variables with rates (Al, eeey Xn) and (Ai, . A;)
m
respectively and if X > A' , then for any t > 0O
P(Xl + ...+ xn >t) > P(Y1 + ... + Yn > t)
Proof:
Use Theorems 2.4, 2.6 and the well known fact that if X1 » X,

are independent and X , Xé are independent, and for any t , P(Xi > t) >

P(Xi >t) , i=1,2, then for any t : P(Xl + X2 3.t)P(Xi + Xé > t)

Q.E.D.




20

Remark:

Proschan and Sethuraman (1974) proved Lemma 2.6 using a slightly

different approach.

Corollary 2.4%:

Fix t > 0, then

T
P Ls(u)du >t
0
is Schur convex function in (B,,3,, «+., By)
1’72 N
Proof:
T

(N)

j Ls(u)du = Q1 + ...+ QN

0
which are independent exponentially distributed with rates Sl,—..., SN
respectively.

Q.E.D

Corollary 2.5:

Fix t > 0 , then P(T(N) > t) 1is Schur convex function in

B sBys wees B

Proof:

Follows from Corollary 2.4




The following theorem provides a lower bound for the survival

probability of a system under an arbitrary load program LS(-)

Theorem 2.7:

Let

N
1
g == z 8 >
Nj'—‘l 3
then for any t > 0 ,
; 3
-8 é Ls(u)du N-1 Bj t
P(T >t) > e Z TS L (u)du
(N) - P s
j=0 0

Proof:

m
First note that (Bl, vees BN) > (ByBy -+., B) . The result

follows from Corollaries 2.1, 2.5.

2.3 Asymptotic Distribution of System Lifetime

In this section we obtain the asymptotic distribution of the svstem
lifetime. We show that under certain conditions the svstem lifetime
normalized properly tends in distribution of the standard normal as the

number of components increases to infinity.

Definition:

Let xl,xz, ... be a sequence of independent random variables such




. . . . _ 2| _ 2
that the distribution of Xk is Fk and E[Xk] =0, E[Xk =0
k =1,2,

Let

(3]
[ 3]
(o]

S =X, +...+X ,s8 =90,4+...+0
n n

We say that the sequence {Xk} satisfies Lindeberg Condition iff for

each € > 0 :

1 2
-3 X dFk(x) +0 as n =+ o ,
n

1
|x|>es

fe~—p

s k

The following are well known theorems that we will use later on:

Thecrem 2.8: (Lindeberg-Feller)

If Lindeberg Condition holds, the distribution of the normalized sums

S
gﬂ tends to the standard normal as n =+ = ,
n

2

mlpm

We write N(0,1) for convergence in distribution.

=}

Theorem 2.9: (Slutzky)

If Xn tends in distribution to X and {An} , {Bn} are

two sequences of random variables converging in probability to a , b

(constants) respectively, then Aan + Bn tends in distribution to

aX + b .




Corollary 2.6: (Slutzky)

Suppose that a_ 1is a sequence of constants tending to = , b
n

D

is fixed number, and an(Xn - b) X . Let g be a differentiable

function, then an(g(Xn) - g(b)) 2 g'(b)X .

Theorem 2.10:

Let Xl’x2’ ces

variables with mean 61,62, ... respectively and suppose that there

be independent exponentially distributed random

exist 0 <L < U constants such that for each n : L fhen <U,

then {Xn - Gn} satisfies Lindeberg Condition.

Proof:

The distribution of Xk ,

Fk(t)

]
[
1
1]

-
rt
\"
o

and hence for A > 0 ,

-A/9
J. xzdFk(x) e k(Az + 2A0

X>A

2
end).

Now since ek are uniformly bounded, check that for n large enough

2
(e.g., n > (%) ) it suffices to consider only the right tail of the

x's , that is,




o~

:!U‘NI"‘

ki

n
f (x - ek)zdFk(x) = Lz ) f (x - ek)zdFk(x)
n
n

1 [x—8k|>csn

but
n
1 2
= 1 j (x - 8,)"dF, (x)
s; k=1 87>
X K 1ol
n
) x*dF, (%)
s k=1
n X>cs
n
1% eS8 0 2
= - 2 e (e s + 2es O, + 26k)
s% k=1 n n k
n

= —éi ne-s'/g.L/U(ean2 + Zc/;UZ + ZUZ)
nL

o e-(eL/U)/; 2

L2

(c2® + 2¢0%/va + 20%/m)

which vanishes as n » « .

Corollary 2.7:

Suppose that there exist 0 < A < B such that for anv n , A < Bn < B,

then:

+ N(0,1) as N =+ « .




Corollary 2.8:

Let ek = —£—. Suppose that ek = 0 + o(l;) as k + = and
By /K
6 >0 .
Then
T
N)
j Ls(u)du
A\ 2 N e/ 2 N(0,8%)
Proof:
T
N)
Ls(u)du
" 0 Ls(u)du
N N A N
n n
kzl "k kzl i
- 5 + AN T~ 8
The first term equals
T
™) .
- 1
J. Ls(u)du k£1 ek N '
/N 0 z Ok/N
N =1 x §
L 9




N

) ei/N - e) -0
k=1

1 N 2 .
As N +» = = Z 6, /N}] - 1 and the second term N
8 kel k

and by Slutzky theorem, the result follows.

Q.E.D.

Example 1:

Suppose that L (t) =L iconstant) and 6, = 8 + o L as k +w
s s k e

where 6 > 0 the asymptotic distribution of the system lifetime T is

6]
T
/ﬁh(—igl - f:) 2 N(O,(B/LS)2> as N =+ = ,

Example 2:

Suppose that Ls(t) =68t , §>0, and the {6,} are as in Example 1.

k
Then

2
T
/ﬁ(é-ﬂﬂ - e) 2 x0,6%
2 N
Use now Corollary 2.6 to show that:

26 %
T(N) i N > N(0,0/28) as N = = ,
The interesting thing about this example is that for linear load program
the asymptotic mean of T

™) E[T(N)] =~ /N whereas the asymptotic

variance is constant.




2.4 More General Load Sharing Rules

A close study of Theorems 2.1 and 2.2 shows that the equal load
sharing rule used throughout the previous sections is not essential for
the derivation of most of the results so far. It seems that a system of
components which obey the linear law breakdown rule is invariant, in
some sense, with respect to the load sharing rule. In this section we
assume a fairly general rule and prove that a modified version of
Theorems 2.1 and 2.2 holds. Thus, using similar arguments as before
we obtain similar results (i.e., IFR, Schur convexity, asymptotic dis-
tribution). In fact, we show that no matter how the total load is being
distributed among the functioning components, the lifetime of the s;stem
remains stochastically the same.

Thus for instance, in analyzing the mechanical breakdown in bundles
of fibers the "local load sharing" rule received some attention in the
literature. The rule here is that every time a fiber fails, the adjacent
fibers take on its load, we show that this system does not differ much
from the equal loac sharing system or from a system that allocates the
total load to a single component at a time.

Again, by Tl’TZ’ ooy TN we denote the lifetimes of components
1,2, ..., N respectively and T(l) :-T(Z) < oo g T(N) are their order
statistics. N(t) 1is the number of components that failed by time
t (£t >0) . Let Ht denote the history of the system at time t

b

that is, Ht is the o-field of events generated by the events of the

form T <t.,T < thy s0ay T <t
( n; 1’"n, 2 n k

i=1,2, ..., k, k

N(t) = k} where t, St

N and {n

IA

R nN} is an arbitrary permutation




Now suppose that for each t > 0 there exist random variables

al(t),az(t), cees aN(t) which are H measurable and satisfy the

t

following:

(1) ai(t) >0, i=1, ..., N
(ii) ai(t) =0 on Ti <t,1i=1, ..., N

N

(1i1) } e« (&) =1 on T
i=1 * ) =

(iv) The sample path ai(-) is measurable.

The vector o(t) = (al(t), cees aN(t)) is the distribution program at
time ¢t , that is, if the load program of the system at t is Ls(t) .
then component i (i = 1,2, ..., N) sustains at t 1load ai(t)Ls(t)
and hence the failure rate of component i at t is Biai(t)LS(t)
Since ai(t) is a random variable, we should interpret the failure rate

in this case as:

|
Lim »P(T, € (t, t+h] | H)= B;a,(E)L_(t) w.p.l

heot

It should be also clear that the atoms of Ht (i.e., the elementary
events) are of the form: ‘T = t., ..., T = N(t) = k) and
I n 1 n |

t
1 koK

since ai(t) is Ht measurable, it is constant on these atoms. We

denote the numerical value of ai(t) on l n, 10 e T K

N(t) = k$ by ai(t . Tnl =ty eee, 'I‘nk =t N(t) = k) .

This is a generalization of the equal load sharing rule we treat in

1

Section 2.1 where ai(t) was there just N NG

on {Ti >t}
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All other assumptions about the model remain the same.

We are ready now to state and prove lemmas and theorems similar to

those in Section 2.1.

Lemma 2.6:

N
P(T(l) > t) = exp [- Z Sjaj(u , N(u) = 0)du

o\-——,n

j=1

Proof:

Clearly for A4 > 0 :

N

Yy B.a.(t , N(t) = 0)a + 0(8)
o1 J1

J

P(T(l)e(t’t+A]lHt)= as 4+ 0, on {T(1)>t}

0 , otherwise.

Thus the result follows by a similar way as in Lemma 2.1.

Lemma 2.7:

Let 0<t)<ty<...<t <t, k<N, andlet {n, ..., nN} be
an arbitrary permutation of {1,2, ..., N} , then for x > 0

P(T(k+l) >t + x| T o o=t T =ty .., T =t

, N(t) = k)
l 2 < nk k

t+x

N
= exp [- f ) Biai(u » Ty =t wees Tty N(u) = k)L _(u)du
1 1=l 1 k
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Proof:

Similar to Lemma 2.2.

Lemma 2.8:

{ti} . {ni} , k , as in Lemma 2.6 and let dt denote the infinitesimal

interval (t , t + dt] , then for x > 0 ,

P(T €dt , T >t+x | T =t,, , T =
0, (k+1) ny 1 o
tk_l,N(t)=k-1)
= |a t, T =¢t, ..., T =t ,N(t)-—-k-l)L(t)
nk( n, 1 no_y k-1 s
t+x N
x exp |- J. Z Bjaj(u , Tn = tl’ ceny Tn = tk , N(u) = k) dufdt .
i=1 1 k
t
Proof:
Similar to Lemma 2.3.
Q.E.D
The following generalizes Theorem 2.1.
Theorem 2.11:
Consider the simplex 0 <t , <t, < ... <ty and (nj} is as in

Lemma 2.6 then:
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P(Tnl e.ggl, cers T“N € 95n> = [Bn Ls(tl)anl(t » N(ty) = O)dtl

1
N
x I 8 L (t,)a (t. , T =1t eeey, T =t ,
. n, s n, n 1’ n, -1
j=2 B3 %4 By 1 =1

N(e) = 3 - l)dtj

t
LY
x exp - N Bya;(u , N(w) = 0L (w)du
o J=1
t
Z N
= = + ...+
+ .Zl Bjaj(u , Tnl ty 5 N(w) 1)Ls(u)du ]
£ J

tN N
.[ .Z Bjaj(u , Tn = tl’ ceey Tnn-l = tN-l , N(u) = N - 1)Ls(u)du
N~

Proof:

Similar to Theorem 2.1 using here Lemmas 2.5, 2.6, and 2.7.

Q.E.D.

As in Section 2.1, we define here the vector (W, ,W

1"%2» . WN) , where

T

i

wi = J. ai(u)Ls(u)du , i=1,2, ..., N .
0

Thus, the W's are the total loads sustained by components 1,2,

The following generalizes Theorem 2.2:

Theorem 2.12:

The random variables Wl, .oey WN are independent exponentially

distributed with rates 61,82, ceey B respectively.

N




Proof:

Very similar to the proof of Theorem 2.2.
Here is the sketch of it. Consider the simplex 0 <t , <t
<ty and (nl, e “N} a permutation of 1, ... N , then on

W.) assumes the

1 =t iee, T = tNS the vector (wl, ey Wy

T s
o,y 1 oy

values

Woo=a (u , N(u) = O)Ls(u)du =

" 1
by
Wn = J- @ (b , NQu) = O)Ls(u)du
2 2
0
2
+ @ ((u) . Tn =ty N(u) = i)Ls(u)du =W
T 2 1 2
1
. etc.

Hence the joint density function of W at the point w is just

a(wl, ceny wn)l -1
an R T L oYY 3(E, s - on by |
1 N *
Check that
Yyl = L (t))a (t, T = t cee, T =
a 2 * ’ *
t j=1 s ] nj i ny 1 nj—l

tj—l * N(tj) = j - l) y

< een

2 -~




where the first term in the product should be interpreted as

Ls(tl)anl(tl . N(tl) = 0) . Combine this with Theorem 2.11 to

obtain

The above theorem provides us with most of the results that we
obtained for the equal load sharing rule. For completeness we state
them here without a proof. Throughout the rest of this section fix
L (+) and let {a(t) : t > 0} be fixed and satisfying conditions

(2.3). Note that under these conditions

T

) .
j Ls(u)du = Z Wi
0 i=1

Theorem 2.13:

If Ls(-) is nondecreasing, then the system's lifetimes is IFR.

Theorem 2.14:

Fix ¢ > 0, then P(T(N) > t) 1is Schur convex function in

(dls cevy BN)

Corollary 2.9:

Let g =

LIl s A
™

i then for any t > 0




P(T(N) >t) > e - .

Theorem 2.15:

Suppose there exist 0 < A < B (constants) such that for any

n>1 Af_sniB,then

T

2 hi
j=1 D

(N) N
f Ls(u)du - 1 s
0 - N(0,1) as N » = ,

1

3
b 2
I 1/8;
=1
Theorem 2.16:
Let ek = l/Bk , k=1,2, ..., N . Suppose that

then

W)
f Ls(u) du
0 D

A\ _ /¥ 50,8% as N-o8 .




CHAPTER 3

GENERAL BREAKDOWN RULE

In this chapter we generalize the assumption about the breakdown
rule. Whereas, in the previous chapter we consider only a linear-
power breakdown rule, here we allow it to be quite general. We basically
adapt the model which was treated by Coleman (1957, 1958) and more
recently by Phoenix (1978). In all previous studies, the models
assumed parallel system of identical components. Here we generalize
it and study systems of noniientical components.

We again consider an N-component parallel system which is subjected
to a nonnegative time dependent load program LS(~) . Thus the nominal
load per component is Ls(t)/N . Throughout this chapter at any time
t > 0, the surviving components are assumed to share the load equally.
If we denote by N(t) the number of components that failed prior to
time t , the actual load carried by each of the N - N(t) surviving
components at t is Ls(t)/N - N(t) . Hence the actual component

load program is a1 stochastic process which we denote by

‘Ls(t)/N - N(t) on N(t) < N

L(t) =
(Ls(t) on N(t) = N .

Each component, therefore, is being subjected to L(t) up to its time
of failure after which its load is being distributed equally among the
rest of the surviving components.

Assumptions about the individual components: Component i (i = 1,

2, ..., N) when it is being subjected to a known load program 1(-)
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has a random failure time Ti which is distributed according to

Fi(t I 1(*)) , where

t
(I K(l(u))du)
o

(3.1) F (t | 1(+)) = 1-e , t >0
where ¥ oo i=1, ..., N, and K satisfy:

(1) for each 1 , wi is increasing, continuous, wi(O) =0,
by (=) =

(ii) K 1is positive increasing, unbounded (i.e., K(®) = «
and has continuous derivative K'(*)

-v; (x)
1f we denote by Gi(x) =1-ce , 1i=1, ..., N, then Gi

t

is a distribution on the positive line and Fi(t | 1) = Gi(f K(l(u))du) .
0

If wi is also differentiable, then under a known load program 1(-) ,

component 1 possesses a failure rate function:

t

(3.2) A (e | 1) = w'iJ‘K(l(u))du K(1(t))
0

Note that in this case the failure rate function contains two factors
t

wi(} K(l(u))du) which characterizes the effect of the load history
0

and K(1(t)) which characterizes the effect of the present load. As
in the previous chapter we should emphasize that the components life-

times are stochastically dependent, but only through their failure rate

functions (see introduction to Chapter 2).




Our approach is similar to the one used by Phoenix (1978). We

will show that the system lifetime (under certain load programs) can

be expressed as a linear combination of order statistics of independent
random variables with known distribution functions. To obtain the
asymptotic distribution of the system lifetime (as the number of com-
ponents increase to infinity) we use Shorack (1973), Stigler (1974),

and some more recent result of Wesley (1977) which also points out an
error in the original version of Stigler. The error in Stigler's paper
leads to an unjustified statement in Phoenix's paper which we will point

out and give a correct version.

3.1 Preliminaries

In this section we review some of the results obtained in Shorack
(1973) and Stigler (1974). Our interest in these papers derives from
the fact that our result leans heavily on them. Their results are
quite general which is more than we need, thus we shall bring only a
modified version which fits our case.

Let X X veey, X be onnegative trian r w
n,1°"n,2’ » Xon an g iangular array of ro

independent random variables having continuous distribution fucntions

F and F =
n

Fn,l’Fn,Z’ 7 “n,n

=N

n
izl Fo,i and let X0y <X 502

.o f_X(n n) be their order statistics. Shorack and Stigler were
’

interested in the asymptotic (as n =+ «) distribution of:

where Cn are known constants.

»1




If we define Jn on [0,1] by

J()=c¢c . ,== Loy .2
n n,i n —n
Jn(o) = Cn,l ?
then
1 n
5. == izl Jn(l/n)X(n’i)

Now suppose the following conditions hold:

1. Let J be continuous on (0,1) and suppose

n J uniformly

on [6 ,1-06], as n—+= for each 6 > 0 .

%—l

2. For some F-l ,
n

of F L.

3. J, Jn are uniformly bounded on (0,1)

(t) - F-l(t) for each continuity point

4, F-l(t) < D(t) , F;l(t) < D(t) for 0 <t <1, where

=1
D(t) = M{t(l - £)] %% for some 5 >0 .
Then:

Theorem 3.1:

If conditions 1, 2, 3, 4 hold, then
- ? 2
ﬂ;(Sn u) N(0,0%)

where




1
M =I Jn(u)F;l(u)du
0

J(s)J(t)K(t,s)dF L(t)ar L(s)

U

(]
O Ny s
O Yy

and

Rewt) =sac-1imt § £ (lo)r (F'l()
(s,t) = s A e 0 357 miln n,i\ n s)

Proof:

Shorack (1973), Theorem 3.1.

2
o can be rewritten as

J(F(x))J(F(y))I(x,y)dxdy

Q
N
[}
© Sy, 8
© Sy 8

where

] o
r(x,y) = llm-; Z

n-e

. [Fn’i(x Ay) = Fn’i(X)Fn,i(y)]

Theorem 3.2:

If the above conditions hold, then

1
ESn *'I J(u)F-l(u)du as n -+ o,
0
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Q.E.D.




3.2 The Result: (The Asymptotic Distribution of T

as N -+ =)

(N)

We denote by Tl’TZ’ cees TN the lifetimes of components 1,2,
.» N respectively and by T(l)’T(Z)’ ey T(N) their order statistics.
We assume that the system is being subjected to a nonnegative load
program LS(-) and that each component obeys the breakdown rule given
in 3.2. (That is, we assume that ¢; », 1=1, ..., N exists and the
failure rate function under a known load program of an individual com-
ponent is given by 3.2.) To begin with, we obtain the joint density
function of Tl, ceey TN under Ls(') using an approach similar to

the one in the previous chapter. The assumptions of the model described

before lead clearly to the following facts:

(F1) Foreach i (i=1, ..., N) ,

PN CY L (t)
PLS(Ti € dt | Tegy > 8) = ¥ j.K 5/ duJK\——)dt .
0

(F2) 1f 0=t0<tl<t2<...<tk<t k < j <N and
(nl, ey nN} is an arbitrary permutation of {1, ..., N} ,

then

PLS(Tnj €de | T = o e T =8 s Tggy 2 t) =

1 k
y L_(t)
ynj IK(L(u,tl, coey tk))du K N - k dt
0

where




L ()

RN AR

L(u,tl, cens tk) = j=0,1, ..., k-1
L (t)
S
N-k°' 2%

and dt 1s the infinitesimal interval (t , t + dt] .
The following lemmas are a direct consequence of (Fl),
(F2) and their proofs are similar to Lemmas (2.1), (2.2),

(2.3) which we omit here.

Lemma 3.1:

n t (Ls(u)) )
o . —igl wi é K m du
LS (l) e .

Lemma 3.2:

Let 0 = to i_tl §-t2 < een f-tk <t k <N and let Nys eees Ny

be an arbitrary permutation of 1,2, ., N, then for x > 0 we have:

PLS(T(k+1) >t + x| T“l =ty e, Tnk =t T(k+1) > t) =

A )
- ¥ K(LCu,t,, ..., t, ))du} -
o d=ktl | 3\ 0 ! k

t
wn.(f K(L(u,tl, ceey tk))du>
j\O

where L(t,tl, ceey tk) is defined in (F2).




Lemma 3.3

{ti} . {ni} as in Lemma 3.2 then for x > O

PLS(TnkEQ » Ty > B+ % | T, =ty eeen T =t s L :)

1 k-1
t Ls(t)
= ¢nk.[ K(L(u,tl, s tk—l))du K(N -k + l)dt
(4]

Ll (T f
- o K(L(u,t,, ..., t ))du) -y ( K(L{u,t,, ..., t ))du)]
. jektl [ nj 0 1 k nj 0 1 k

We are now ready to obtain the joint density function of Tl’ ceey Ty oo

Theorem 3.3

Let {ni} , {ti} be as in Lemma 2, then

PL (Tn € ggi i=1, ..., N) =
s i

t

i
N
n W;L I K(L(uytl) ey tN))du K(L(ti)tls .9 tN))dti
i=1 1\%

£y
-wn‘(j' K(L(u,tl, eer, tN))du)
i\ o

where

L(u,tl, cee, b
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t
' Proof:
Combine Lemmas 1, 2, 3 in a similar way as in Theorem 2.1.
Q.E.D.
Next we generalize Theorem 2.2 to this model:

Consider L(t,T(l),T(z), eus T(N)) where L 1is as defined above

and {T(j)} is the order statistics and defined by:

Ty

(3.3) Qi = .[ K(L(u,T(l), ceey T(N)))du
0

then the following theorem is a general version of Theorem 2.2:

Theorem 3.4:

fhe random variables Ql’ ceny QN are independent and distributed
according to Gl’ cvey GN respectively, where

-wi(x)
Gi(x) =] -¢ x>0.

Proof:

We prove it by obtaining the joint density of Ql’ ey QN . Since
K(*») 1is (by assumption) increasing and the equal load sharing is applied,
then under Ls(°) > 0 the mapping defined in (3.3) is one to one and
hence the joint density of Ql’ ey QN can be expressed in terms of the

joint density function of Tl’TZ’ cees TN . Let {nl, cees nN} be an

arbitrary permutation of {1, ..., N} , if fQ Q and
’

o 0




EEEERY T are the joint densities of the Q's and T's re-
1
spectively, then fQ U I fT e, T llJ]]_l ,
! ™ i N
3(q1, ceuy qN)
where |[J]]| = IO Now consider 0 < q; < q, < ... < gy
to find f£

Q , ... Qn (ql’ et qN) let tl < t2 < .e. < tN be such
nl N
that,

t

1 L (u)
qlSIK N du

0

rt
N

Ls(u))
3 q2=q1+ KN_ldu

[nd
=

N

Ay = Iy-; F f K(L (u))du .

EN-1

It is easy to see that {ti} are uniquely defined and furthermore,

L (t.)
s 1
K(N )

L_(t,) (:>
(oe2)

N-1




fq , ..., q G =fp ¢ (5 e gl 1317
! N ny g

N -wn.<q1)

= 1 w;i(qi)e .

» 0 < g, <q, < ... €@y -
=1 1 2 N

Since this argument holds for any arbitrary {ni} , the proof is

complete.

Q.E.D.

Remark:

The above theorem holds even when the wi's are not differentiable.
This theorem, as we pointed out before, is the adaptation of Theorem 2.2
to the more general model and its importance is that it enables us to
express T(N) -- system lifetimes as a weighted sum of Q(l)’ . Q(N) -
the order statistics of the Q's , then use Stigler's results to derive
the asymptotic distribution of T(N) as N -+ « , The same approach
was used by Phoenix (1978) to derive the asymptotic results for the

identical-component system.

With the function K(*) mentioned in (3.2) we associate the

function
————%——- » 0<x<1l,x2>0
(3.4) $(x,1) = K(l - x)
0 » X =1

From the assumptions about K(+) , it follows that g% d(x,2) = o' (x,))

is decreasing and continuous on ([O0,1] .




To illustrate the method we will first consider the case in which

T

the system load program Ls(t) = Ls (constant). Thus if Tl, cees Ty

and Ql’ ey QN are as defined in (3.3) and if T(l)’T(Z)’ ceey T(N) ,
Q(l)’ ceey Q(N) are their order statistics then under Ls(t) = NL

(constant) we have:

T(l) = ¢(0’L)Q(l)

1 .
Teeny " Ty = 50 [Quany = Q) 1712

thus
T(N) = Z ¢(i ;‘_I;L) - ¢(§;L)]Q(1)
i=]1

We define

Jy(x) = N:¢(-i—;—l,1,) - ¢(N3,L): = g L 5_%
(3.5)

340 = Njo(0,L) - o5
Then

and furthermore:

Lemma 3.4:

Iy~ -¢'(*,L) uniformly in [0,1] as N + o .,

e,
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Proof:

By assumption, ¢' 1is continuous and hence uniformly continuous

in {0,1] . By the mean value theorem 3 ty € (i - 1d

N °N
n=¢(£—§—l,L) - ¢(%’L): = -¢'(t;,L) , so for each x € [0,1] 3t with

) such that

|t - x| < 1/n such that |—¢'(x,L) - JN(x)l = |—¢'(x,L) + ¢'(t,L)|
which by the uniform continuity of =-¢' is uniformly small as n » « .

Q.E.D.

In fact T(N) can be rewritten in the following way

N

! :
T ¥ L, 0P

for some {tN,i}

Corollary 3.1:

{JN} are uniformly bounded on [0,1]

Theorem 3.5:

Suppose that the following hold:

(i) For some G_1 . G;I(t) -+ G—l(t) for each continuity point

of G“l , Where

o
0
o3|

and {Gi} are from Theorem 3.2.




(1ii) é;l , G-l are bounded above by M[t(1l - t)]-lﬁﬂS for some

§>0,M>0.

Then under the constant load program Ls = NL

/E(T(N) - uN) 2 N(O,cz) as N+ =

where
1
by =IJN(U)G;l(u)du
0
and
11
g =ff¢'(s,L)¢'<c,L)K(s,c)dc'l(c)dc'l(s)
00
where

K(s,t) =s A t - 11m— Z G (~ l(t)) ( ;l(s))
i_.

Furthermore the asymptotic mean of T( is given by

N)
1

b= I -6" (u,L)¢ L (u)du .
0

Proof:

All conditions of Theorem 3.1 hold.
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In his paper, Thoenix obtained similar results for the identical
components case. However, he went on to conclude that /;(T(n) = u)
2 N(O,oz) . Unfortunately, this is not a direct consequence of the

above theorem, unless one shows that ET(n) =y + o(;L) as n +» o ,
n

Stigler (1974) addressed this problem (see Theorem 4 there) but as it
turned out his argument was not complete (see for instance Stigler
(1979) or Wesley (1977)). Thus as far as we can tell, Theorem 2 and
Corollary 1 in Phoenix (1978) still need to be justified. One possible
solution was provided by Shorack (1972) (see Example 1), which can be
stated as follows:

For the identical component system (i.e., Gi = G V i) under a

constant load program Ls = NL .

Theorem 3.6:

(i) For some r > 0 , fxrdG(x) <@,

PR S
(11) For some &§ >0 , M > 0 , i¢'(x,L)l < Me(1 - t)] r

(1i1) ¢''(+,L) exists and continuous on (0,1) and

- %+l+5
lo'"(x,L)] < Mle(1 - t)) t

then

N ( - u) 2 N(O,cz) as N » o

Ty

where u , 02 are as in Theorem 3.2.




Proof:

See Example 1, Shorack (1972).

Q.E.D.

Next we show how to derive similar results for a more arbitrary
load program. To avoid complicated expressions, we restrict ourselves
to the power-law breakdown rule (i.e., K(t) = (Kt)p , p>1 and
suppose Ls(t) = N1(t) , thus 1(t) 1is the nominal load per component.

By the definitions of {T(i)} . {Q(i)} we have

T
_ o]
Qyy = J' [K1(u)]°du
0
(i+1) ;
- K1(1) - -
Qiv) ~ Q) = (1 - i/N) du, t=1, ..., N1
T
thus
T
o, _ .-p
0
T(i41) ;
o 1 - 1/N
aw)fau = (25285 ) 10 ) - 9]
Tei)
and
T . 9] P
S
J- Aw)Tdu = 3 N—"—) - \—/ |
) i=1




p

1 - x)

Define: ¢(x,k) = ( .

Theorem 3.7:

If the conditions of Theorem 3.2 hold, then

T

N I (l(u))pdu— H
0

N 2 N(O,oz) as N » o

where My o 02 are as defined in Theorem 3.2. Suppose 1(*) > 0,

and if

t
h(t) =f (1(u)1Pdu , t > 0O
0

then h % 1is well defined and

Corollary 3.2:

2 N(O,(éi-h-l(u))zoz) as N+ o

&(T(N) - (“N))

where u , By » 02 as in Theorem 3.2.

Proof:

The above is a special case of Slutsky theorem.
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